Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616783

RESUMO

Ultrasonic guided waves offer a convenient and practical approach to structural health monitoring and non-destructive evaluation. A key property of guided waves is the fully defined relationship between central frequency and propagation characteristics (phase velocity, group velocity and wavenumber)-which is described using dispersion curves. For many guided wave-based strategies, accurate dispersion curve information is invaluable, such as group velocity for localisation. From experimental observations of dispersion curves, a system identification procedure can be used to determine the governing material properties. As well as returning an estimated value, it is useful to determine the distribution of these properties based on measured data. A method of simulating samples from these distributions is to use the iterative Markov-Chain Monte Carlo (MCMC) procedure, which allows for freedom in the shape of the posterior. In this work, a scanning-laser Doppler vibrometer is used to record the propagation of Lamb waves in a unidirectional-glass-fibre composite plate, and dispersion curve data for various propagation angles are extracted. Using these measured dispersion curve data, the MCMC sampling procedure is performed to provide a Bayesian approach to determining the dispersion curve information for an arbitrary plate. The distribution of the material properties at each angle is discussed, including the inferred confidence in the predicted parameters. The percentage errors of the estimated values for the parameters were 10-15 points larger when using the most likely estimates, as opposed to calculating from the posterior distributions, highlighting the advantages of using a probabilistic approach.


Assuntos
Ondas Ultrassônicas , Teorema de Bayes
2.
Sensors (Basel) ; 18(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274158

RESUMO

Smart structures mimic biological systems by using thousands of sensors serving as a nervous system analog. One approach to give structures this sensing ability is to develop a multifunctional sensor network. Previous work has demonstrated stretchable sensor networks consisting of temperature sensors and impact detectors for monitoring external environments and interacting with other objects. The objective of this work is to develop distributed, robust and reliable strain gauges for obtaining the strain distribution of a designated region on the target structure. Here, we report a stretchable network that has 27 rosette strain gauges, 6 resistive temperature devices and 8 piezoelectric transducers symmetrically distributed over an area of 150 × 150 mm to map and quantify multiple physical stimuli with a spatial resolution of 2.5 × 2.5 mm. We performed computational modeling of the network stretching process to improve measurement accuracy and conducted experimental characterizations of the microfabricated strain gauges to verify their gauge factor and temperature coefficient. Collectively, the results represent a robust and reliable sensing system that is able to generate a distributed strain profile of a common structure. The reported strain gauge network may find a wide range of applications in morphing wings, smart buildings, autonomous cars and intelligent robots.

3.
Lab Chip ; 17(6): 1116-1127, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28207921

RESUMO

New tools for applying force to animals, tissues, and cells are critically needed in order to advance the field of mechanobiology, as few existing tools enable simultaneous imaging of tissue and cell deformation as well as cellular activity in live animals. Here, we introduce a novel microfluidic device that enables high-resolution optical imaging of cellular deformations and activity while applying precise mechanical stimuli to the surface of the worm's cuticle with a pneumatic pressure reservoir. To evaluate device performance, we compared analytical and numerical simulations conducted during the design process to empirical measurements made with fabricated devices. Leveraging the well-characterized touch receptor neurons (TRNs) with an optogenetic calcium indicator as a model mechanoreceptor neuron, we established that individual neurons can be stimulated and that the device can effectively deliver steps as well as more complex stimulus patterns. This microfluidic device is therefore a valuable platform for investigating the mechanobiology of living animals and their mechanosensitive neurons.


Assuntos
Dispositivos Lab-On-A-Chip , Mecanorreceptores , Técnicas Analíticas Microfluídicas , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Cálcio/metabolismo , Desenho de Equipamento , Mecanorreceptores/química , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Imagem Óptica , Optogenética , Estimulação Física/instrumentação , Estimulação Física/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...